How to set up Hardware & Software, Build & Compile Firmware, Validate DFU, and Wifi SCAN using Raytac’s Nordic nRF7002+nRF5340 WiFi+BLE Devkit-AN7002Q-DB-5340-M

Raytac has advanced the dev kit version of bundle offer – WIFI+BLE: AN7002Q-DB-
5340-M with an on-board flash memory(MX25R64) to create easy evaluation
for Wi-Fi project developments.

Table of Content———————————————————————————————————

  1. Hardware Set Up
    A. Project WITHOUT External Flash MX25R64 needed
    B. Project WITH External Flash MX25R64 needed
  2. Software Resources & Preparations
  3. Firmware Build & Compile
    A. Project WITHOUT External Flash MX25R64 needed
    B. Project WITH External Flash MX25R64 needed
  4. Validate DFU Process & WIFI SCAN

—————————————————————————————————————————-


1. Hardware Set Up

Hardware Kit on hand:

Note: Pease make sure to have both “Nordic nRF5340-DK” and “AN7002Q-DB-5340-M” connected and running during the WIFI+BLE (nRF7002+nRF5340) project development.

Hardware Network:
IDC Ribbon Wire(J-Link Cable): Connect nRF5340-DK to AN7002Q-DB-5340-M
USB Wire –Type C USB: Power supply to AN7002Q-DB-5340-M through USB TYPE-C
USB Wire-Micro USB: Power supply to nRF5340-DK through Micro USB

A. Project WITHOUT External Flash MX25R64 needed
– Allocate QSPI for communication between MDBT53 (BLE) and AN7002Q (WIFI)
– External flash MX25R64 flash memory is not activated
NO additional resistor swapping needed, keep it as it is on board now. The Resistors on board align with the Nordic board definition (same as nRF7002-DK).
– Please closely follow the definition chart printed on back side of board AN7002Q-DB-5340-M.
“Component Options Table” > “AN7002Q active with QSPI (Typ)”


– Photo showing the resistor allocation:


– Schematic of the AN7002Q-DB-5340-M(Click on the image to zoom in):


B. Project WITH External Flash MX25R64 needed
– Allocate SPI for communication between MDBT53 (BLE) and AN7002Q (WIFI)
– Allocate QSPI for XIP: External flash MX25R64 is activated
– It is REQUIRED to reallocate resistors to swap the QSPI and SPI on the AN7002Q-DB-5340-M in order to activate the circuit for MX25R64.
Do necessary resistors swapping manually (closely follow the definition chart printed on back side of board AN7002Q-DB-5340-M.)
Component Options Table” >  “External flash and AN7002Q active with SPI enable


– Photo showing the resistor allocation:
Detach the resistor -R27
Component Options Table” >  “External flash and AN7002Q active with SPI enable
<<< Necessary resistors swapping manually needed ↓ >>>


– Schematic of the AN7002Q-DB-5340-M(Click on the image to zoom in):
Modify the above resistors swapped and necessary component based on the chart:
“Component Options Table” >  “External flash and AN7002Q active with SPI enable”


!! Important Note:!!
The circuit of SW1(p1.08)/SW2(p1.09)/LED1(p1.06) on AN7002Q-DB-5340-M is NOT COMPATIBLE to Nordic WI-FI Control Pin of swctrl1(p1.08)/host_irq(p1.09)/grant(p1.06).
In this case, if you’re working with external flash MX25R64 for the WIFI project, Please avoid pin SW1/SW2/LED1 usage while LED2(p1.07) remains available as normal usage.
For the design perspective of mother board/carrier board /target board (mounted with AN7002Q & MDBT53 modules), it is required to design the circuit align to SW1(p0.23)/SW2(p0.24)/LED1(p0.28).



2. Software Resources & Preparations
Download nRF Connect For Desktop (Please Click Me)
Download nRF Command Line Tools (Please Click Me)

Step 1: Prepared with the latest version of nRF Connect for Desktop, using Windows 64-bit – 5.2.0
Step 2: Prepared with the latest version of Command Line Tools, using Windows X86 64 – 10.24.2

**Note: SEGGER J-LINK Upgrade message might pop up while you’re doing above downloads.

 If you’re initiating Segger Embedded Studio (SES) application, please check the guideline here(Click me) 

Step 3: Locate all the necessary kits for programming in PC



3. Firmware Build & Compile
After you download and set up nRFConnect SDK (NCS), you will be able to apply free VS (Visual Studio) Code IDE as firmware programming tool.
Here’re the guidelines to developing programs without/with External Flash MX25R64.

A. Project WITHOUT External Flash MX25R64 needed
You can directly build/compile on Nordic NCS without any additional configurations/modifications needed.

B. Project WITH External Flash MX25R64 needed
– Allocate SPI for communication between MDBT53 (BLE) and AN7002Q (WIFI)
– Allocate QSPI for XIP: External flash MX25R64 is activated

The below example uses NCS v3.1.1 and runs the under: C:\ncs

Step 1: Start with a Wi-Fi Scan project and run the program under: C:\ncs\v3.1.1\raytac
<<Create a new application and Copy a sample>>


Step 2: Select SDK v3.1.1 to copy the sample


Step 3: Select example by entering keyword: wifi scan(Wi-Fi Scan)


Step 4: Enter application location and name the project as: wifi_scan_uart_dfu


Step 5: Open an existing application and find the registered project: wifi_scan_uart_dfu

★★How to activate the Devicetree setting of Wi-Fi nRF7002 and Create file: nrf5340dk_nrf5340_cpuapp.overlay
Code example is as follows:
/ {
  chosen {
              aliases {
                       /delete-node/ leds;
                       /delete-node/ buttons;               
              }; 
          }; 

          leds {
                   compatible = “gpio-leds";

                   led1: led_1 {
                             gpios = <&gpio1 7 GPIO_ACTIVE_HIGH>;
                             label = “Green LED 1″;
                   };

          };

          /* These aliases are provided for compatibility with samples */
          aliases {
                   led1 = &led1;
          };
};

&mx25r64 {
  status = “okay";
};

/ {
          chosen {
                   nordic,pm-ext-flash = &mx25r64;
                   zephyr,wifi = &wlan0;
          };
};

&gpio_fwd {
    /delete-node/ uart;
};

&gpio_fwd
{
  status = “disabled";
};

&qspi {
          status = “okay";
          pinctrl-0 = <&qspi_default>;
          pinctrl-1 = <&qspi_sleep>;
          pinctrl-names = “default", “sleep";
          mx25r64: mx25r6435f@0 {
                   compatible = “nordic,qspi-nor";
                   reg = <0>;
                   /* MX25R64 supports only pp and pp4io */
                   writeoc = “pp4io";
                   /* MX25R64 supports all readoc options */
                   readoc = “read4io";
                   sck-frequency = <8000000>;
                   jedec-id = [c2 28 17];
                   sfdp-bfp = [
                             e5 20 f1 ff  ff ff ff 03  44 eb 08 6b  08 3b 04 bb
                             ee ff ff ff  ff ff 00 ff  ff ff 00 ff  0c 20 0f 52
                             10 d8 00 ff  23 72 f5 00  82 ed 04 cc  44 83 68 44
                             30 b0 30 b0  f7 c4 d5 5c  00 be 29 ff  f0 d0 ff ff
                   ];
                   size = <67108864>;
                   has-dpd;
                   t-enter-dpd = <10000>;
                   t-exit-dpd = <35000>;
          };
};

&spi1 {
    status = “okay";
    compatible = “nordic,nrf-spim";
    pinctrl-0 = <&spi1_default>;
    pinctrl-1 = <&spi1_sleep>;
    pinctrl-names = “default", “sleep";
cs-gpios = <&gpio1 12 GPIO_ACTIVE_LOW >;
nrf70: nrf7002@0 {
    status = “okay";
compatible = “nordic,nrf7002-spi";
reg = <0>;
spi-max-frequency = <24000000>;
/* Wi-Fi Pins used */
iovdd-ctrl-gpios = <&gpio1 0 GPIO_ACTIVE_HIGH>;
bucken-gpios = <&gpio1 1 GPIO_ACTIVE_HIGH>;
host-irq-gpios = <&gpio1 9 GPIO_ACTIVE_HIGH>;
wlan0: wlan {
compatible = “nordic,wlan";
};
wifi-max-tx-pwr-2g-dsss = <21>;
wifi-max-tx-pwr-2g-mcs0 = <16>;
wifi-max-tx-pwr-2g-mcs7 = <16>;
wifi-max-tx-pwr-5g-low-mcs0 = <9>;
wifi-max-tx-pwr-5g-low-mcs7 = <9>;
wifi-max-tx-pwr-5g-mid-mcs0 = <11>;
wifi-max-tx-pwr-5g-mid-mcs7 = <11>;
wifi-max-tx-pwr-5g-high-mcs0 = <13>;
wifi-max-tx-pwr-5g-high-mcs7 = <13>;       
};

nrf_radio_coex: nrf7002-coex {
status = “okay";
compatible = “nordic,nrf700x-coex";
req-gpios = <&gpio1 5 GPIO_ACTIVE_HIGH>;
status0-gpios = <&gpio1 4 GPIO_ACTIVE_HIGH>;
grant-gpios = <&gpio1 6 (GPIO_PULL_DOWN | GPIO_ACTIVE_LOW)>;
swctrl1-gpios = <&gpio1 8 GPIO_ACTIVE_HIGH>; 
};         
};

&pinctrl {
  spi1_default: spi1_default {
group1 {
psels = <NRF_PSEL(SPIM_SCK, 1, 15)>,
<NRF_PSEL(SPIM_MOSI, 1, 13)>,
<NRF_PSEL(SPIM_MISO, 1, 14)>;
};
  };
  spi1_sleep: spi1_sleep {
group1 {
psels = <NRF_PSEL(SPIM_SCK, 1, 15)>,
<NRF_PSEL(SPIM_MOSI, 1, 13)>,
<NRF_PSEL(SPIM_MISO, 1, 14)>;
low-power-enable;
};
  };
};

/ {
chosen {
zephyr,console = &uart2;
zephyr,shell-uart = &uart2;                                 
};
};

&uart2 {
status = “okay";
current-speed = <115200>;
pinctrl-0 = <&uart2_default>;
pinctrl-1 = <&uart2_sleep>;
pinctrl-names = “default", “sleep";
};

&pinctrl {
uart2_default: uart2_default {
                  group1 {
                          psels = <NRF_PSEL(UART_TX, 1, 2)>,
                                     <NRF_PSEL(UART_RX, 1, 3)>;
                          bias-pull-up;
                  };
};
uart2_sleep: uart2_sleep {
                  group1 {
                          psels = <NRF_PSEL(UART_TX, 1, 2)>,
                                     <NRF_PSEL(UART_RX, 1, 3)>;
                          low-power-enable;
                  };
};
};


Step 7: It is required to do MCUBoot before working with DFU using External Flash
Please do the code configuration in sysbuild.conf as following reference code.

SB_CONFIG_BOOTLOADER_MCUBOOT=y
# DFU with UART
SB_CONFIG_MCUBOOT_MODE_SINGLE_APP=n

# DFU with external flash
SB_CONFIG_PM_EXTERNAL_FLASH_MCUBOOT_SECONDARY=y

Step 8: It is required to do MCUMGR before working with DFU over UART
Please do the code configuration in prj.conf as following reference code.

# Enable QSPI driver for Application
CONFIG_NORDIC_QSPI_NOR=y

# Enable mcumgr DFU in application
CONFIG_MCUMGR=y    
CONFIG_NET_BUF=y
CONFIG_ZCBOR=y  
CONFIG_CRC=y    

# Enable mcumgr management for both OS and Images
CONFIG_MCUMGR_GRP_OS=y 
CONFIG_MCUMGR_GRP_IMG=y
CONFIG_FLASH=y
CONFIG_IMG_MANAGER=y
CONFIG_STREAM_FLASH=y
CONFIG_FLASH_MAP=y

# Configure MCUMGR transport to UART
CONFIG_MCUMGR_TRANSPORT_UART=y
CONFIG_BASE64=y

Step 9: Add with MCUBoot setting , and create a root for sysbuild ; Build with file mucboot.overlay & file mcuboot.conf

9A. With mucboot.overlay
&mx25r64 {
status = “okay";
};

/ {
          chosen {
                   nordic,pm-ext-flash = &mx25r64;
          };
};

&gpio_fwd {
/delete-node/ uart;
};

&gpio_fwd
{
status = “disabled";
};

9B. With file: mcuboot.conf

CONFIG_NORDIC_QSPI_NOR=y
CONFIG_BOOT_MAX_IMG_SECTORS=512

Step 10: Create a VERSION file by referencing the following code when testing DFU over UART.
VERSION_MAJOR = 99
VERSION_MINOR = 0
PATCHLEVEL = 0
VERSION_TWEAK = 0
EXTRAVERSION =

Step 11: Add build configuration.


Step 12: Add build configuration >> Choose Board target: nrf5340dk/nrf5340/cpuapp


Step 13: Generate and Build


Step 14: Generate a Merged.hex file after compiling the program


Step15: You can choose Build/Debug/Flash under ACTIONS during development
<< Build >>


<< Debug >>


<< Flash >>


Step 16: Go to ACTIONS >> Memory report


Now you can see partitions available in the system. mcu_secondary has already been located in MX25R64 flash memory.



4. Test/Validate DFU Process & WIFI SCAN
After the firmware programmed to MDBT53 module on board, we use the USB to UART adaptor board for connection AN7002Q-DB-5340-M through: A. MCUMGR UART to PC and through: B. WiFi Scan UART to PC respectively.
Note: We suggest you finish connecting A. and B. before running tests.



Now we can run the tests.

A. DFU over UART – Using AuTerm Program
1. We can locate Image version=V99.0.0 under the current VERSION file


It also indicates Image version: 99.0.0 in MCUmgr-Slot 0.


2. Try to modify the file version from V99 to V100 under VERSION file:
VERSION_MAJOR = 100

VERSION_MINOR = 0

PATCHLEVEL = 0

VERSION_TWEAK = 0

EXTRAVERSION =

And go with “Pristine Build”


3. We’re about to run DFU over UART , Please DO NOT do “Flash” or “Erase”.


Proceed with “Force reboot”


4. It’s now Version 100.0.0 in Slot 0 under MCUgr ⭢ DFU over UART successfully done!


Before it was Version 99.0.0 in Slot 1 under MCUgr.


B. WIFI SCAN – PuTTY Console
WIFI SCAN credentials can be located under PC Console – PuTTY.



Useful references:
Nordic Developer Academy
nRF Connect SDK Documentation
Wi-Fi Samples
Nordic DevZone – Technical Forum



Edited by Business Development Manager: Jocelyn Tsai
Technical Guidance by R&D Manager: MW Lee

Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA) / abietec Inc.
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262

Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN

All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC/RoHS/Reach Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)



Essential Tips for nRF54L15 HEX File Verification

Hi readers, did you know that Raytac offers a special service exclusively for our customers? 😉
We offer support services: HEX file verification and flashing firmware into modules per customer’s requests.
Compared to the series nRF52 and nRF53’s 2 in 1 or 3 in 1 merged hex files, nRF54L15 requires something slightly different. Following are the tips and suggestions.

Before building your own .hex file on Raytac’s nRF54L15 modules(Product link), please configure some settings(shown below) in advance.

In VS Code:

  1. Go to Add Build Configuration
  2. Find System Build (sysbuild) ➝ Choose Build System Default
  3. Click Generate and Build


Starting from NCS v2.8.0 (including later versions), the .hex file can be generated in two different paths.
1. ..\nrf\samples\bluetooth\application-name\build\merged.hex
2. ..\nrf\samples\bluetooth\application-name\build\application-name\zephyr\zephyr.hex



Using the AN54LQ/AN54LV series as an example:
When you provide the programming file (.hex) for production, please ensure that the file is taken from the following path:
1. ..\nrf\samples\bluetooth\application-name\build\merged.hex
And we also do not recommend renaming the merged HEX file due to Nordic suggestions.

For more details behind this suggestion, please refer to the Nordic DevZone link below.
https://devzone.nordicsemi.com/f/nordic-q-a/120313/how-to-modify-the-name-of-the-merged-hex-file


Suggested path:
1. ..\nrf\samples\bluetooth\application-name\build\merged.hex

Not recommended path:
2. ..\nrf\samples\bluetooth\application-name\build\application-name\zephyr\zephyr.hex
The zephyr.hex file is not recommended to be used for flashing or verification in the production process.

Thank you all for your patience in reading!
Best wishes for your projects – your success is Raytac’s success! 😊



For more information, please contact:
Raytac Contact Form: https://www.raytac.com/contact/
Raytac Sales email: sales@raytac.com
abietec Service email: service@abietec.com


Edited by Account Manager: Ms. Elfreda Guo


Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA) / abietec Inc.
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC/RoHS/Reach Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)

Nordic’s nRF54L15/L10/L05 BLE Modules from Raytac now in Mass Production

Raytac AN54LQ series Modules: Guiding Your Project at Every Turn, While Saving Power at Every Step

[28/07/2025, New Taipei, Taiwan]
We are proud to officially announce Mass Production (MP) for Raytac’s next-gen Nordic-based Bluetooth LE modules:

Just like traffic lights that direct every journey safely and efficiently, Raytac’s nRF54L series modules guide your wireless development—keeping you on the right path with cutting-edge performance and exceptional power savings.

🚦 Each light signals a different member of the nRF54L15 / nRF54L10 / nRF54L05 module family—showcasing a clear path for your Bluetooth Low Energy (LE) applications, no matter which industry you’re from and where you’re headed.

These modules are now available for your design-in, offering:
✅ Powerful performance
✅ Ultra-low power consumption
✅ Compact footprints
✅ Full Global certifications: FCC/IC/CE/UKCA/Telec/KC/NCC/SRRC/RCM/WPC
✅ BT 6.0 certified
✅ Full Nordic nRF54 Series compatibility
✅ Pin-to-pin compatible amongst AN54LQ series

Whether you’re building for consumer IoT, industrial sensors, healthcare, or wearables—Raytac’s modules deliver the reliability you need and the efficiency you expect.

For more information, please contact:
Raytac Contact Form: https://www.raytac.com/contact/
Raytac Sales email: sales@raytac.com
abietec Service email: service@abietec.com


Edited by Business Development Manager: Tony Yin


Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA) / abietec Inc.
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262

Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC/RoHS/Reach Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)

Raytac Product Change Notice(PCN) Announcement for Nordic nRF54L modules series

Raytac would like to officially announce a Product Change Notice (PCN) for our Bluetooth Low Energy modules based on Nordic Semiconductor’s nRF54L series SoCs, including the nRF54L15, nRF54L10, and nRF54L05.
This update specifically concerns the Part Number (PN) changes for improved clarity and product identification across our lineup.

Affected Models
Please refer to the table/list below for the full details of the updated part numbers.
(Click on the image to zoom in)


Reminder
This PCN involves part number naming only.
There are no changes to product function, performance, quality, form factor, or safety compliance. All existing certifications and technical documentations remain valid.

We kindly invite our customers, distributors, and partners to update your records accordingly. For any questions or support regarding this update, feel free to reach out via: service@raytac.com


Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA)
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC/RoHS/Reach Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)

nRF52840 Nordic SoC USB Dongle – MDBT50Q-CX-40, Now Supports Zephyr RTOS

Zephyr RTOS hosted in Linux system has become a leading IoT ecosystem and it has been widely adopted as an open-source , real-time operation system for embedded devices, making it easier for developers to integrate the project smoothly.

Nordic Semiconductor , a main contributor to Zephyr, from the Bluetooth LE controller and USB stack to test tools, DFU frameworks.. and more, is making great effort and strategic decisions to adopt the Zephyr open-source into its nRFConnect(NCS) SDK program.

Raytac Corporation , a hardware-based manufacturer and a comprehensive solution developer with Nordic SoC development for multi-protocol complied wireless modules, now expands support for Zephyr RTOS ecosystem with its nRF52840 USB-C dongle – MDBT50Q-CX-40.

Zephyr support package for MDBT50Q-CX-40: https://docs.zephyrproject.org/latest/boards/raytac/mdbt50q_cx_40_dongle/doc/index.html


Reminder: The current Nordic released NCS SDK may NOT upgrade with Zephyr package at the same pace ; It is recommended to get the latest NCS SDK version to access the complete Zephyr support package.

If you’re interested in how Zephyr becomes powerful for a developer to start a project design easier and how the Nordic nRFConnect SDK community brings you to the world of Zephyr RTOS system, never hesitate to save the spot in the upcoming webinar on July 2nd, 2025. How Zephyr became the leading open-source RTOS for IoT (Click on the link to know more)

Resources:
– Begin your journey with Nordic nRFConnect SDK community – nRF Connect SDK Fundamentals
User Manual of MDBT50Q-CX (nRF52840/nRF52833-based USB-C Dongle)


Edited by Business Development Manager: Ms. Jocelyn Tsai


Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA)
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6.1 ; BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)

MCUboot DFU Guide For Raytac MDBT50Q-DB-40 (Using NCS V2.9.1)

This guide teaches you how to use MCUboot for DFU (Device Firmware Update),
Combined with nRF Connect SDK (NCS) V2.9.1 to upgrade firmware on Raytac’s MDBT50Q series modules.


Table of contents:

  1. Hardware Set Up
  2. Software Kits resource download & install
  3. Compile and load the program
    a. Open VS Code
    b. Project setup
    c. Setup the situation for DFU over UART or DFU over USB
    d. Start compiling your project
    e. Load your compiled program into the MDBT50Q-DB-40 demo board
  4. DFU to MDBT50Q-DB-40 over UART / USB
  5. Execute USB DFU using AuTerm
  6. DFU using your custom keys

1. Hardware setup
– Equip Raytac’s MDBT50Q-DB-40 development board
– Ensure the board is connected via USB to your PC


2.Software Kits resources download & install
– Resources download:
nRF Connect for Desktop – Download nRF Connect for Desktop (Please Click Me)
nRF Command Line Tools – Download nRF Command Line Tools (Please Click Me)
Visual Studio Code – Download Visual Studio Code(Please Click Me)

Install nRF Connect for Desktop ➔ install Programmer and Toolchain Manager.


Open Toolchain Manager and install SDK V2.9.1.


Install Visual Studio Code


3. Compile and load the program
a. Open VS Code(Visual Studio Code)


Note:
If it’s your first time using the software: after installing all the extensions, you should see the same on your screen.


b. Project setup
b.1 Create an example code(In this article: peripheral_uart)
Please refer to the following steps:
Create a new application ➔ Copy a sample ➔ NCS V2.9.1


b.2 Name the Project: peripheral_uart
Input peripheral_uart and the corresponding example program will appear in the options section below.


Note: We named the project peripheral_uart_mcuboot to distinguish it.
This project will create a directory named peripheral_uart_mcuboot.

c. Build an environment for DFU over UART or DFU over USB
– Create a new application ➔ Open

Right click on the project name you just created (peripheral_uart_mcuboot), a pop-up menu will appear. Select the first option “Show in Explorer" from the pop-up menu to display all project files.


Then select New File to create a sysbuild.conf file.


select sysbuild.conf, left-click on it, and a blank box will show.


Input the file name and write: SB_CONFIG_BOOTLOADER_MCUBOOT=y


Parameters and instructions
Add a new file mcuboot.conf, in the sysbuild folder, and input the following parameters into the file. (Add relevant parameters according to UART or USB)
(Note: Please be informed if you want to use DFU over UART in the end, you should use UART when you first create the environment. Similarly, if you want to use DFU over USB, you should create the USB environment at the beginning.)

For DFU over UART
# Enable logging for MCUboot
CONFIG_LOG=y
CONFIG_MCUBOOT_LOG_LEVEL_WRN=y
# Enable Serial Recovery over UART
CONFIG_MCUBOOT_SERIAL=y
# Disable UART, since Serial Recovery uses it
CONFIG_UART_CONSOLE=n
# Configure the bootloader to use two slots
CONFIG_SINGLE_APPLICATION_SLOT=n
# Turn on a LED so we can see when Serial Recovery mode is active
CONFIG_MCUBOOT_INDICATION_LED=y


For DFU over USB
# Enable logging for MCUboot
CONFIG_LOG=y
CONFIG_MCUBOOT_LOG_LEVEL_WRN=y
# Enable Serial Recovery over UART
CONFIG_MCUBOOT_SERIAL=y
# Disable UART, since Serial Recovery uses it
CONFIG_UART_CONSOLE=n
# Configure bootloader to use two slots
CONFIG_SINGLE_APPLICATION_SLOT=n
# Turn on a LED so we can see when Serial Recovery mode is active
CONFIG_MCUBOOT_INDICATION_LED=y
# Configure serial recovery to use CDC_ACM, which by default uses the USB
CONFIG_BOOT_SERIAL_CDC_ACM=y
# Increase flash space for the MCUboot image to fit USB drivers
CONFIG_PM_PARTITION_SIZE_MCUBOOT=0x10000


Create a new file: mcuboot.overlay and add the following parameters.


For DFU over UART
/* Configure button and LED for Serial Recovery */
/ {
    aliases {
          mcuboot-button0 = &button0;
          mcuboot-led0 = &led0;
    };
  };


For DFU over USB
/* Configure button and LED for Serial Recovery */
/ {
    aliases {
          mcuboot-button0 = &button0;
          mcuboot-led0 = &led0;
    };
  };
/* Configure CDC ACM */
&zephyr_udc0 {
            cdc_acm_uart0: cdc_acm_uart0 {
                        compatible = “zephyr,cdc-acm-uart";
            };
};


Note: if you use DFU over USB, please enable the USB subsystem in prj.conf.


After all the setup is completed, you can start compiling your project.


d. Start compiling your project
Add Build Configuration ➔ Select target board ➔ In this example, choose raytac_mdbt50q_db_40/nrf52840.


Start compiling by clicking “Generate and Build" at the bottom-right corner.


e. Load your compiled program into the MDBT50Q-DB-40 demo board
After compiling without error, select the flash function to load your program into the MDBT50Q-DB-40 demo board.


If the below is shown, it means that you have successfully loaded your program into the demo board.


4. DFU to MDBT50Q-DB-40 through UART / USB
DFU over UART
Hold the SW2 button then plug the power into the USB connector.
The system will enter the bootloader mode.
You can then DFU the new firmware via the UART.


DFU over USB
If you update your firmware through USB, please also hold the SW2 button and connect the USB cable.


5. Execute USB DFU using AuTerm
AuTerm is a free-for-download PC software on Windows.
It allows you to update your new firmware on the MDBT50Q-DB-40 demo board.
Download link:
https://github.com/thedjnK/AuTerm/releases/download/v0.35a-pre/AuTerm_test_Win_x64_v0.35a.7z

Steps:
Select the tab Config to set the correct COM port.


Follow the sequences in the below screenshot.


You can use the file peripheral_uart_mcuboot.signed.bin for testing.
It is located in peripheral_uart_mcuboot/build.
Then follow the sequences in the below screenshot.
DFU will be completed when the progress reaches 100%.


6. DFU using your custom keys
When you compile the code, you will see the below warning.
Reason: It’s required to have your own private key to ensure your product’s security.
Following are the steps to enable security features.


Step 1. Create the key
First, install the imgtool program using pip.


Then use the following command to generate your private key in your project folder.
After the private key is generated, you can access it in your directory.


Step 2. Configure the project to use this key in sysbuild.conf

# Add MCUboot
SB_CONFIG_BOOTLOADER_MCUBOOT=y
#Add private key for MCUboot
SB_CONFIG_BOOT_SIGNATURE_KEY_FILE="\${APP_DIR}/private_key.pem"
# Configure key type
SB_CONFIG_BOOT_SIGNATURE_TYPE_ECDSA_P256=y


Step 3. Build and flash the project again. Your firmware will have security features.


Edited by Account Manager: Mr. Welson Kuo


Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA)
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6.1 ; BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)


Raytac’s nRF54L15 module Demo Board: AN54LQ-DB-15 is now officially supported in the Zephyr Project

We’re excited to announce that the Raytac AN54LQ-DB-15 development board is now listed and fully supported in the Zephyr Project’s official board documentation! This milestone provides developers with seamless access to hardware abstraction, sample code, and configuration tools—directly within the Zephyr RTOS environment.

Based on Nordic Semiconductor’s latest nRF54L15 SoC, this board offers a cutting-edge platform for developing Bluetooth® Low Energy and other 802.15.4 protocol-related applications. The features include:

– Module Demo Board built by AN54LQ-15 module
– Built-in debug interface for streamlined development and testing
– Compatibility with Zephyr’s device tree and board configuration system
– Antenna variants: Ceramic Chip / PCB Trace / u.FL Connector
– Nordic nRF54L15 Solution
– A recommended 3rd-party module by Nordic Semiconductor.
– Intended for BT specification BT6, including Channel Sounding features
– Pre-certified with FCC, IC, CE, Telec (MIC), KC, SRRC, NCC, RCM, WPC
– Intended for EU new Cyber Security Standard: EN 18031
– RoHS & Reach Compliant.
– 128 MHz ARM® Cortex™-M33 processor with TrustZone® technology
– 128 MHz RISC-V co-processor with TrustZone® technology
– 1.5MB Flash Memory / 256KB RAM
– 31 GPIO
– Interfaces: QSPI(Software), SPI, UART, I2C, I2S, PDM, PWM, ADC, and NFC
– Highly flexible multiprotocol, ideally suited for
Bluetooth® Low Energy, ANT+, Zigbee, Thread (802.15.4), and Matter ultra low-power wireless applications.


Reference:
AN54L15Q-DB Zephyr Documentation
nRF54L15 module: AN54LQ-15(Chip antenna)
nRF54L15 module: AN54LQ-P15(PCB antenna)
nRF54L15 module: AN54LQ-U15(u.FL connector for external antenna)
nRF54L15 module demo board: AN54LQ-DB-15
nRF54L15 ultra compact module: AN54LV-15(Chip antenna)
nRF54L15 ultra compact module: AN54LV-P15(PCB antenna)
Nordic Third-party modules/modems


By being integrated into the Zephyr ecosystem, developers gain direct access to well-maintained upstream code, continuous integration support, and community-driven updates. Whether you’re building IoT sensors, connected medical devices, or industrial automation systems, using the AN54LQ-DB-15 with Zephyr ensures a modern, scalable, and open-source-ready development experience.


Start building faster—with less setup and more confidence—thanks to this powerful combination of Raytac hardware and the Zephyr real-time operating system!


Our other Demo boards that are also listed on Zephyr:
MDBT50Q-DB-33 (nRF52833 module Demo Board)
MDBT50Q-DB-40 (nRF52840 module Demo Board)
MDBT53-DB-40 (nRF5340 module Demo Board)
MDBT53V-DB-40 (nRF5340 module Demo Board)


Edited by Business Development Manager: Mr. Tony Yin


Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA)
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6.1 ; BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)


Benefits of Raytac’s WFA Certified Wi-Fi Solutions-nRF7002 module-AN7002Q Series

[2025.02.19]
Raytac Corporation is proud to announce that our application for Wi-Fi Alliance (WFA) certification on the AN7002Q series(based on Nordic’s nRF7002 IC) has been successfully approved. This achievement reinforces our commitment to providing high-quality, reliable, and standard-compliant wireless solutions.
By leveraging this certification, our modules ensure seamless interoperability, enhanced security, and superior performance for a wide range of IoT applications.


Advantages of Using Raytac Modules with WFA Certification:

Reliable and Secure Connectivity – Ensures seamless communication with other Wi-Fi-certified devices while meeting industry-leading security standards for stable and secure data transmission.
Faster Time-to-Market – Pre-certified modules simplify compliance processes, reducing development time.
Global Market Access – Certification helps meet regulatory requirements in multiple regions, expanding business opportunities.
Significant Cost-Saving – Compared to the chip-on-board approach, using Raytac’s Wi-Fi module allows direct access to the Derivative programs(please click here for more descriptions), leveraging Raytac’s CID to minimize certification costs and save time-to-market.


To learn more about Wi-Fi certifications and Wi-Fi + BLE applications, feel free to contact us anytime at sales@raytac.com.


Edited by Account Manager: Ms. Mandy Chao




Raytac Corporation 勁達國際電子股份有限公司
A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208


How to use Raytac’s MDBT50Q-CX-40 dongle as a BLE sniffer?

Introduction

Uncertainties in Bluetooth Application Development
Bluetooth’s growing popularity comes with challenges during development. Common issues include hardware instability, software incompatibilities, and environmental interference.
Accurate issue identification and resolution are keys to successful development.

Common Uncertainties
Unstable Connections: Disruptions from wireless signals or physical obstacles.
Pairing Failures: Devices unable to establish connections.
Data Errors: Packet loss or corruption during transmission.
Compatibility Problems: Protocol version mismatches affecting interoperability.

Efficient Bluetooth Issue Analysis
Challenges like transmission speed limitations, data loss, connection failures, or protocol violations can arise. As Bluetooth signals travel wirelessly, precise analysis requires specialized tools.
Nordic offers firmware integrated with Wireshark, flashable onto the Raytac MDBT50Q-CX-40 Dongle, enabling engineers to capture and analyze Bluetooth broadcast signals via USB.
This setup streamlines issue identification and resolution.
Below’s how to configure the Dongle for Wireshark reception.



Flashing Firmware into MDBT50Q-CX-40
Step 1: Download and extract the nRF Sniffer for Bluetooth LE from Nordic:
https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-Bluetooth-LE
Step 2: Locate the file: sniffer_nrf52840dongle_nrf52840_4.1.1.hex
This is the firmware to flash into MDBT50Q-CX-40.


Step 3: Press and hold the button on MDBT50Q-CX-40 and plug it into a PC USB port.
Bootloader mode will be activated after the LED light is turned on.
Then flash the firmware using nRF Programmer.

Step 4: Open the nRF Programmer and follow the below steps:
Select the Device:


The device will appear as the name shown in below:


Add Firmware File:


Load sniffer_nrf52840dongle_nrf52840_4.1.1.hex into the Programmer:


Press “Write" to flash the firmware.
After flashing, press “Select Device" again.
If the Device name appears as nRF Sniffer for Bluetooth, the flashing is successful.


Set Up Wireshark Software Environment
Step 1: Download & install nRF-Util: https://www.nordicsemi.com/Products/Development-tools/nRF-Util
Step 2: Open MS-DOS and use the command nrfutil list to check if the ble-sniffer item is available.
If not, install it using nrfutil install ble-sniffer.


Step 3: Download and Install Wireshark: https://www.wireshark.org/download.html.
Step 4: Open Wireshark and navigate to: Help → About Wireshark → Folders.
Step 5: Locate the string under Personal Extcap Path for the extcap directory, which will be an empty folder.


Step 6: Copy the files from nrf_sniffer_for_bluetooth_le_4.1.1\extcap (downloaded earlier) into Wireshark\extcap directory.


Step 7: After reopening, you should see an interface with a configurable icon next to the dongle.


Step 8: Edit Configuration Profiles Import From Directory Navigate to the directory nrf_sniffer_for_bluetooth_le_4.1.1\Profile_nRF_Sniffer_Bluetooth_LE and click “Select Folder".


Step 9: The profile will be imported. Click OK to confirm.


After all the above is done, the setup shall be completed.



Capturing and analyzing Bluetooth packets
After launching the program, you can see the following devices and Dongle settings.
Double-click to start the packet capture process:


If you want to capture packets with PHY=125K, you can use the following settings:


Packet Analysis Method
In Wireshark, select the device from the “Device" menu to capture and analyze broadcast packets.


User Cases – What sniffer can offer
1. Disconnection when transmitting over 20 bytes between Tablet and Raytac’s AT-Command Module:
Through sniffer analysis, it was discovered that Raytac’s module requested a packet length of 251 bytes, but the tablet’s TX setting was limited to 27 bytes.


2. Broadcast Device Name containing invisible characters:
The device could connect using a mobile app but failed to connect using Central’s code.
From the sniffer interface shown below, the device name length is 11, but the Length field shows 13.
The actual data length (Type length + Device Name) = 1 + 11 = 12, indicating an issue with the program’s broadcast name length.


3. Incorrect parameter settings causing issues with throughput or packet reception:
Improper settings can lead to reduced throughput, incorrect data reception, or disconnections.
The diagram below shows a correct setup with high-volume data transmission. The Protocol Length is 251, and the data transmission intervals are consistent, achieving optimal throughput.


Summary
Mastering hardware and software setups and effectively using packet analysis tools can boost development efficiency and enable high-performance Bluetooth applications.

Resources:
https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-Bluetooth-LE
https://docs.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/resource/nRF_Sniffer_BLE_UG_v4.0.0.pdf
https://www.wireshark.org/download.html

User manual:
https://raytac.blog/2024/07/10/firmware-coding-dfu-onto-mdbt50q-rxuser-manual-of-mdbt50q-cx-nrf52840-usb-c-dongle/


Edited by Business Development Manager: Mr. Tony Yin
Technical guidance provided by R&D Manager: Mr. Stanley Huang


Raytac Corporation 勁達國際電子股份有限公司
A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262

Bluetooth Specification: BT6.0 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN

All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208



Overview of Raytac’s nRF54L15 module – AN54L15 series & Channel Sounding preview (Bluetooth 6.0)

Raytac nRF54L15 Module Series (If you want to know more or register for samples, please click me)
Table of Contents:

  1. nRF54L15 SoC feature brief
  2. Comparison among nRF54L15/ nRF5340/ nRF52840/ nRF52832 SoC modules
  3. Get started with nRF54L15 development (NCS 2.8.0)
  4. Channel Sounding preview

Next Level multi-protocol SOC -nRF54L Series

A. NEW generation nRF54L15 Soc Series

Key Features:
– ARM Cortex M33 + RISC-V co-processor 128Mhz in Nordic SoC
– Ultra compact Soc variant QFN/WLCSP, 22nm
– 2x the processing power, 3x the processing efficiency
– Industry-leading power consumption for battery-critical applications
– Global RTC wake-up from system-off
– Compatible with Raytac WIFI module -AN7002Q series
– High throughput 4MB proprietary radio mode
– Bluetooth Specification 6.0 / Support Channel sounding (Pending firmware)
– PSA(Platform Security Architecture) security level 3 qualified

Raytac’s nRF54L15 Modules
– AN54LQ-15 (Regular) & AN54LV-15(Compact)


B. Comparison among nRF54L15/ nRF5340/ nRF52840/ nRF52832 SoC modules

If you are familiar with Nordic nRF52, nRF53 module series, you will have better idea to tell the difference heading to NRF54L series by referring to the chart as below. (Click on the picture to zoom in)


C. Get started with nRF54L15 development (NCS 2.8.0)

nRF54L15 SoC Spec  << access link
Nordic nRF54L15 DK  << access link
Raytac AN54LQ-DB-15   << access link to be updated

Photo of Nordic nRF54L15 DK


Preparation of Hardware:
1. 1x Nordic NRF54L15 DK (PCA10156-0.9.1)
(Note: If you have PDK (PCA10156-0.8.1) on hand, it can be done in trial phase)
2. 1x Raytac AN54LQ-DB-15
3. 1x IDC Ribbon wire
4. 2x USB-C connector wires (for powering the kit up)

Note: Using Nordic nRF54L15DK / nRF54L15PDK as debugging tool and Raytac Demo board-AN54LQ-DB-15 as simulated carrier board(main board) to proceed the program of nRF54L15 for code compiling and development.

Tips: Please align the red edge of Ribbon at side of 1 in connector J1.


Step 1 —- Connected NRF54L15 DK and AN54LQ-DB-15 by IDC Ribbon wire
Step 2 —- Powering on both NRF54L15 DK and AN54LQ-DB-15 by USB-C connector


<<  Schematic of AN54LQ-DB-15(Updated on 21-Jan-2025)  >> (Click on the picture to zoom in)


Software Kits Resource & Preparation
Download nRF Connect For Desktop (Please Click Me)
Download nRF Command Line Tools (Please Click Me)


Preparation
1. Prepared with the latest version of nRF Connect for Desktop and Select version Windows 64-bit – 5.1.0
2. Prepared with the latest version of nRF Command Line Tools and Select version Windows x86 64-10.24.2
**Note: SEGGER J-LINK Upgrade message might pop up while you’re doing above download.

 If you’re initiating Segger Embedded Studio (SES) application, please check the guideline here(Click me) 

3. Locate all the necessary kits for programming in PC (Check Software/Application list)


Get started with building your program

Intro: The development tool of nRF Connect SDK(NCS) equipped with free VS (Visual Studio) Code IDE for firmware compile and programming.
Note: it is highly recommended to apply NCS 2.8.0 for advanced features of nRF54L15.

Step 1 —- Activate your “nRF Connect for Desktop”  >> “Toolchain Manager” >> “Open” >> “Install”


Step 2 —- You will find multiple options of NCS V x.x.x in the tool, we’re using NCS v2.8.0 as example to run sample code of nRF54L15.


Step 3 —- Make sure the NCS v2.8.0 is installed at same directory with compiling system. (the root of Open VS Code) (This is using C:\ncs  as example.)


In case to organize the files, do “Select directory’” and “Confirm”.


Step 4 —- After nRF Connect SDK v2.8.0 Download ready , go “Open VS Code”.


Step 5 —- Go “Open Existing Application” , and activate example code: Bluetooth > peripheral_uart


Step 6 —- Moving to program build & compiling by selecting dev kit: nrf54l15dk/nrf54l15/cpuapp


Step 7 —- You will get a .hex file after the above programming compiling process.


Step 8 —- Functions are available for during the code compiling process under “ACTIONS” in VS Code IDE
<< Build >>


<< Debug >>


<< Flash >>


Firmware Programming
It is feasible to do the firmware programming using nRFConnect SDK (NCS) tool.
Developer may use “Programmer” to do the firmware flashing with the candidate .hex file.

Step 1 —- Execute nRF Connect for Desktop >> Programmer >> Open


 “Select Device”


Select ”nRF54L15 DK


“Add File”


Step 2 —- Select the candidate .hex file

Select “Erase & Write”


It indicates the programming process is on the way↓


The firmware programming process is done after seeing “Completed” in system Log field.


Step 3 —- Use the mobile App to make sure the Bluetooth broadcasting is functioning after the firmware flashing process is successfully done to the module.


D. Channel Sounding Preview

What is Channel Sounding? —- Advance the “Find My” feature into next level accuracy
Have you ever concerned about the distance accuracy when you’re using RSSI to get the distance between devices and to evaluate the transmission distance with legacy Bluetooth module?
Nordic NRF54 solution has taken us into next level with Channel Sounding feature that achieves the “centimeter-level” distance accuracy. Early implement achieves 10-20cm in the record.

Credit: Bluetooth Alliance


How does Bluetooth Channel Sounding work?
Bluetooth Channel Sounding implemented with Phased-Based Ranging (PBR) & Round-trip time (RTT)(the concept idea of TOF time of flight) algorithm to achieve a higher precision of measuring distance between 2 devices.

Phased-Based Ranging (PBR):
Signal has been sent between initiator and reflector with multiple frequency to increase measuring accuracy.

Credit: Bluetooth Alliance


Round-trip time (RTT): It’s the concept of utilizing TOA (Time of arrival). Using TOD(Time of departure) & TOA to measure the timing during the packet transmission between devices.

Credit: Bluetooth Alliance


Potential applications:
Personal item finding
Secure access control
Smart lock system
Digital Key
Asset Tracking


Reference:
Bluetooth Channel Sounding
nRF54L15 DK hardware
nRF Connect SDK Documentation
Nordic Dev Zone forum
AN54LQ-15 Module series


Edited by Business Development Manager: Ms. Jocelyn Tsai
Technical guidance provided by R&D Manager: Mr. MW Lee & Mr. Stanley Huang




Raytac Corporation 勁達國際電子股份有限公司
A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208