Raytac and onceLabs Deepen Collaboration with Live Demo of Mobile‑to‑Embedded Bluetooth Channel Sounding

A LinkedIn debut becomes a live showcase at Embedded World North America with
Raytac’s Bluetooth LE module solution and Google Pixel 10
.

[Anaheim, CA — November 2, 2025]
At embedded world North America — Raytac Corporation, a global leader in wireless modules, together with onceLabs, a U.S.-based global Nordic Design Partner specializing in custom embedded and mobile application software, will present a live demo of Bluetooth Channel Sounding. The demonstration showcases the accuracy and potential of the new Bluetooth 6.0 feature by combining Raytac’s Nordic-based nRF54L15 (AN54LQ-15) module with a Google Pixel 10 smartphone.

Bluetooth Channel Sounding adds a new dimension to wireless connectivity by combining secure data transfer with the low‑power, low‑cost Bluetooth technology already trusted worldwide — now extended to deliver precise location awareness. This evolution means IoT devices can gain both communication and ranging capabilities in a single, efficient platform. With tens of centimeter distance accuracy, Channel Sounding enables practical new use cases such as secure access, proximity‑based services, indoor navigation, and ‘Find My’ functionality.

Android 16 now supports Channel Sounding APIs, making it possible for developers to access this capability directly on flagship devices like the Pixel 10. With anticipated pervasive adoption across the mobile ecosystem, Channel Sounding is positioned to scale broadly and become a standard feature for IoT applications.

The onceLabs demo was reported as the first of its kind in August, gaining notability on LinkedIn(Post link) — and is now being shown for the first time in a public venue. onceLabs’ free BLE Hero app(Download Link) is a sniffer, analyzer, and development tool, available in app stores, and can be seen in action during the live demo. The Android version has been updated to capture and display Channel Sounding data, giving developers clear insight into ranging accuracy and system performance. Since 2018, Raytac and onceLabs have collaborated to bring new Bluetooth capabilities from specification to market‑ready solutions. Raytac’s proven hardware platforms and onceLabs’ application‑layer software expertise combine to accelerate adoption of emerging standards, showing how partnership can translate advanced technology into product‑ready functionality.

QR code on the left: watch the Channel Sounding Live Demo; QR code on the right: download the BLE Hero app on Google Play.

“Our collaboration with onceLabs has always been about enabling customers to move quickly and confidently with the latest Bluetooth technology,” said Lyon Liu, CEO of Raytac Corporation. “This live demo of Channel Sounding is another example of how our partnership delivers not just modules, but complete solutions that inspire new applications.”

Together, Raytac and onceLabs are demonstrating how Bluetooth Channel Sounding can move from specification to practical demonstrations that product companies can act on.

“With Raytac providing the hardware foundation and onceLabs delivering the application software, we continue to support customers in translating new Bluetooth features into real use cases,” said Joseph Bakalor, President and CTO of onceLabs. “Channel Sounding is a perfect example — and with our expertise in Zephyr RTOS, developers can build on open, production‑ready software that scales from prototype to deployment.”

The Raytac + onceLabs demo will be featured in Raytac Booth 5067 at embedded world North America, November 4–6, 2025, at the Anaheim Convention Center. Attendees are invited to visit the booth to see the demo in action and learn how Raytac and onceLabs can support their next wireless product.


For more information or to schedule a meeting:
– Raytac: sales@raytac.com
– onceLabs: support@oncelabs.com or book an online meeting at https://calendly.com/jbakalor/30min


Company Descriptions

About Raytac
Raytac Corporation is a leading provider of wireless modules, offering one of the industry’s broadest portfolios of pre‑certified solutions built on Nordic Semiconductor SoCs. With a focus on quality, reliability, and ease of integration, Raytac helps product companies accelerate development and reduce risk when bringing wireless products to market. From consumer devices to industrial applications, Raytac modules are trusted worldwide for their performance, compliance, and long‑term availability.
Company website: www.raytac.com

About onceLabs
onceLabs delivers custom embedded firmware and mobile application software with a passion for translating client use cases into cloud‑enabled applications that leverage the latest wireless innovations. Known for delivering quality user experiences while optimizing performance and power consumption, onceLabs helps bring products to life through custom software. With design expertise spanning Bluetooth LE, Wi‑Fi, cellular, and other wireless protocols — and a strong engineering foundation in both embedded and mobile software — onceLabs accelerates time‑to‑market through a systems approach to architecture, continuous integration, and real‑world reliability.
Company website: www.oncelabs.com


Edited by Business Development Manager: Tony Yin

Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA) / abietec Inc.
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC/RoHS/Reach Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)

Raytac Product Change Notice(PCN) Announcement for Nordic SoC USB-A Dongle – MDBT50Q-RX Series

Raytac Corporation would like to inform all customers and partners of an official Product Change Notice: PCN-25100801 regarding the following product series:

Affected Series
MDBT50Q-RX Series (nRF52840/833 based USB-A dongles)

Affected Models
MDBT50Q-RX (Product Link)
MDBT50Q-RX-33
MDBT50Q-RX-ATM (Product Link)
MDBT50Q-RX-ATMS

Reminder
This PCN involves:

  1. Update of Raytac’s company logo on the nameplate, and
  2. Addition of NCC logo on the back label.

There are no changes to product function, performance, quality, form factor, or safety compliances. All existing certifications and technical documentations remain valid.

We kindly invite our customers, distributors, and partners to update your records accordingly. For any questions or support regarding this update, feel free to reach out via: service@raytac.com.

Full details of the PCN please see below(Click on the images to zoom in).
Remark: Please take note of the final shipment date.


Edited by Business Development Manager: Tony Yin

Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA) / abietec Inc.
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC/RoHS/Reach Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)

Raytac’s nRF54L15 module Demo Board: AN54LQ-DB-15 is now officially supported in the Zephyr Project

We’re excited to announce that the Raytac AN54LQ-DB-15 development board is now listed and fully supported in the Zephyr Project’s official board documentation! This milestone provides developers with seamless access to hardware abstraction, sample code, and configuration tools—directly within the Zephyr RTOS environment.

Based on Nordic Semiconductor’s latest nRF54L15 SoC, this board offers a cutting-edge platform for developing Bluetooth® Low Energy and other 802.15.4 protocol-related applications. The features include:

– Module Demo Board built by AN54LQ-15 module
– Built-in debug interface for streamlined development and testing
– Compatibility with Zephyr’s device tree and board configuration system
– Antenna variants: Ceramic Chip / PCB Trace / u.FL Connector
– Nordic nRF54L15 Solution
– A recommended 3rd-party module by Nordic Semiconductor.
– Intended for BT specification BT6, including Channel Sounding features
– Pre-certified with FCC, IC, CE, Telec (MIC), KC, SRRC, NCC, RCM, WPC
– Intended for EU new Cyber Security Standard: EN 18031
– RoHS & Reach Compliant.
– 128 MHz ARM® Cortex™-M33 processor with TrustZone® technology
– 128 MHz RISC-V co-processor with TrustZone® technology
– 1.5MB Flash Memory / 256KB RAM
– 31 GPIO
– Interfaces: QSPI(Software), SPI, UART, I2C, I2S, PDM, PWM, ADC, and NFC
– Highly flexible multiprotocol, ideally suited for
Bluetooth® Low Energy, ANT+, Zigbee, Thread (802.15.4), and Matter ultra low-power wireless applications.


Reference:
AN54L15Q-DB Zephyr Documentation
nRF54L15 module: AN54LQ-15(Chip antenna)
nRF54L15 module: AN54LQ-P15(PCB antenna)
nRF54L15 module: AN54LQ-U15(u.FL connector for external antenna)
nRF54L15 module demo board: AN54LQ-DB-15
nRF54L15 ultra compact module: AN54LV-15(Chip antenna)
nRF54L15 ultra compact module: AN54LV-P15(PCB antenna)
Nordic Third-party modules/modems


By being integrated into the Zephyr ecosystem, developers gain direct access to well-maintained upstream code, continuous integration support, and community-driven updates. Whether you’re building IoT sensors, connected medical devices, or industrial automation systems, using the AN54LQ-DB-15 with Zephyr ensures a modern, scalable, and open-source-ready development experience.


Start building faster—with less setup and more confidence—thanks to this powerful combination of Raytac hardware and the Zephyr real-time operating system!


Our other Demo boards that are also listed on Zephyr:
MDBT50Q-DB-33 (nRF52833 module Demo Board)
MDBT50Q-DB-40 (nRF52840 module Demo Board)
MDBT53-DB-40 (nRF5340 module Demo Board)
MDBT53V-DB-40 (nRF5340 module Demo Board)


Edited by Business Development Manager: Mr. Tony Yin


Raytac Corporation 勁達國際電子股份有限公司 / Raytac Corporation (USA)
A Bluetooth, Wi-Fi, and LoRa Module Maker/ODM & OEM Manufacturer based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6.1 ; BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
https://www.raytac.com/contact/
email: sales@raytac.com
Tel: +886-2-3234-0208(TW)/+1-626-217-3139(USA)


Benefits of Raytac’s WFA Certified Wi-Fi Solutions-nRF7002 module-AN7002Q Series

[2025.02.19]
Raytac Corporation is proud to announce that our application for Wi-Fi Alliance (WFA) certification on the AN7002Q series(based on Nordic’s nRF7002 IC) has been successfully approved. This achievement reinforces our commitment to providing high-quality, reliable, and standard-compliant wireless solutions.
By leveraging this certification, our modules ensure seamless interoperability, enhanced security, and superior performance for a wide range of IoT applications.


Advantages of Using Raytac Modules with WFA Certification:

Reliable and Secure Connectivity – Ensures seamless communication with other Wi-Fi-certified devices while meeting industry-leading security standards for stable and secure data transmission.
Faster Time-to-Market – Pre-certified modules simplify compliance processes, reducing development time.
Global Market Access – Certification helps meet regulatory requirements in multiple regions, expanding business opportunities.
Significant Cost-Saving – Compared to the chip-on-board approach, using Raytac’s Wi-Fi module allows direct access to the Derivative programs(please click here for more descriptions), leveraging Raytac’s CID to minimize certification costs and save time-to-market.


To learn more about Wi-Fi certifications and Wi-Fi + BLE applications, feel free to contact us anytime at sales@raytac.com.


Edited by Account Manager: Ms. Mandy Chao




Raytac Corporation 勁達國際電子股份有限公司
A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208


How to use Raytac’s MDBT50Q-CX-40 dongle as a BLE sniffer?

Introduction

Uncertainties in Bluetooth Application Development
Bluetooth’s growing popularity comes with challenges during development. Common issues include hardware instability, software incompatibilities, and environmental interference.
Accurate issue identification and resolution are keys to successful development.

Common Uncertainties
Unstable Connections: Disruptions from wireless signals or physical obstacles.
Pairing Failures: Devices unable to establish connections.
Data Errors: Packet loss or corruption during transmission.
Compatibility Problems: Protocol version mismatches affecting interoperability.

Efficient Bluetooth Issue Analysis
Challenges like transmission speed limitations, data loss, connection failures, or protocol violations can arise. As Bluetooth signals travel wirelessly, precise analysis requires specialized tools.
Nordic offers firmware integrated with Wireshark, flashable onto the Raytac MDBT50Q-CX-40 Dongle, enabling engineers to capture and analyze Bluetooth broadcast signals via USB.
This setup streamlines issue identification and resolution.
Below’s how to configure the Dongle for Wireshark reception.



Flashing Firmware into MDBT50Q-CX-40
Step 1: Download and extract the nRF Sniffer for Bluetooth LE from Nordic:
https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-Bluetooth-LE
Step 2: Locate the file: sniffer_nrf52840dongle_nrf52840_4.1.1.hex
This is the firmware to flash into MDBT50Q-CX-40.


Step 3: Press and hold the button on MDBT50Q-CX-40 and plug it into a PC USB port.
Bootloader mode will be activated after the LED light is turned on.
Then flash the firmware using nRF Programmer.

Step 4: Open the nRF Programmer and follow the below steps:
Select the Device:


The device will appear as the name shown in below:


Add Firmware File:


Load sniffer_nrf52840dongle_nrf52840_4.1.1.hex into the Programmer:


Press “Write" to flash the firmware.
After flashing, press “Select Device" again.
If the Device name appears as nRF Sniffer for Bluetooth, the flashing is successful.


Set Up Wireshark Software Environment
Step 1: Download & install nRF-Util: https://www.nordicsemi.com/Products/Development-tools/nRF-Util
Step 2: Open MS-DOS and use the command nrfutil list to check if the ble-sniffer item is available.
If not, install it using nrfutil install ble-sniffer.


Step 3: Download and Install Wireshark: https://www.wireshark.org/download.html.
Step 4: Open Wireshark and navigate to: Help → About Wireshark → Folders.
Step 5: Locate the string under Personal Extcap Path for the extcap directory, which will be an empty folder.


Step 6: Copy the files from nrf_sniffer_for_bluetooth_le_4.1.1\extcap (downloaded earlier) into Wireshark\extcap directory.


Step 7: After reopening, you should see an interface with a configurable icon next to the dongle.


Step 8: Edit Configuration Profiles Import From Directory Navigate to the directory nrf_sniffer_for_bluetooth_le_4.1.1\Profile_nRF_Sniffer_Bluetooth_LE and click “Select Folder".


Step 9: The profile will be imported. Click OK to confirm.


After all the above is done, the setup shall be completed.



Capturing and analyzing Bluetooth packets
After launching the program, you can see the following devices and Dongle settings.
Double-click to start the packet capture process:


If you want to capture packets with PHY=125K, you can use the following settings:


Packet Analysis Method
In Wireshark, select the device from the “Device" menu to capture and analyze broadcast packets.


User Cases – What sniffer can offer
1. Disconnection when transmitting over 20 bytes between Tablet and Raytac’s AT-Command Module:
Through sniffer analysis, it was discovered that Raytac’s module requested a packet length of 251 bytes, but the tablet’s TX setting was limited to 27 bytes.


2. Broadcast Device Name containing invisible characters:
The device could connect using a mobile app but failed to connect using Central’s code.
From the sniffer interface shown below, the device name length is 11, but the Length field shows 13.
The actual data length (Type length + Device Name) = 1 + 11 = 12, indicating an issue with the program’s broadcast name length.


3. Incorrect parameter settings causing issues with throughput or packet reception:
Improper settings can lead to reduced throughput, incorrect data reception, or disconnections.
The diagram below shows a correct setup with high-volume data transmission. The Protocol Length is 251, and the data transmission intervals are consistent, achieving optimal throughput.


Summary
Mastering hardware and software setups and effectively using packet analysis tools can boost development efficiency and enable high-performance Bluetooth applications.

Resources:
https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-Bluetooth-LE
https://docs.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/resource/nRF_Sniffer_BLE_UG_v4.0.0.pdf
https://www.wireshark.org/download.html

User manual:
https://raytac.blog/2024/07/10/firmware-coding-dfu-onto-mdbt50q-rxuser-manual-of-mdbt50q-cx-nrf52840-usb-c-dongle/


Edited by Business Development Manager: Mr. Tony Yin
Technical guidance provided by R&D Manager: Mr. Stanley Huang


Raytac Corporation 勁達國際電子股份有限公司
A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262

Bluetooth Specification: BT6.0 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN

All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208



Overview of Raytac’s nRF54L15 module – AN54L15 series & Channel Sounding preview (Bluetooth 6.0)

Raytac nRF54L15 Module Series (If you want to know more or register for samples, please click me)
Table of Contents:

  1. nRF54L15 SoC feature brief
  2. Comparison among nRF54L15/ nRF5340/ nRF52840/ nRF52832 SoC modules
  3. Get started with nRF54L15 development (NCS 2.8.0)
  4. Channel Sounding preview

Next Level multi-protocol SOC -nRF54L Series

A. NEW generation nRF54L15 Soc Series

Key Features:
– ARM Cortex M33 + RISC-V co-processor 128Mhz in Nordic SoC
– Ultra compact Soc variant QFN/WLCSP, 22nm
– 2x the processing power, 3x the processing efficiency
– Industry-leading power consumption for battery-critical applications
– Global RTC wake-up from system-off
– Compatible with Raytac WIFI module -AN7002Q series
– High throughput 4MB proprietary radio mode
– Bluetooth Specification 6.0 / Support Channel sounding (Pending firmware)
– PSA(Platform Security Architecture) security level 3 qualified

Raytac’s nRF54L15 Modules
– AN54LQ-15 (Regular) & AN54LV-15(Compact)


B. Comparison among nRF54L15/ nRF5340/ nRF52840/ nRF52832 SoC modules

If you are familiar with Nordic nRF52, nRF53 module series, you will have better idea to tell the difference heading to NRF54L series by referring to the chart as below. (Click on the picture to zoom in)


C. Get started with nRF54L15 development (NCS 2.8.0)

nRF54L15 SoC Spec  << access link
Nordic nRF54L15 DK  << access link
Raytac AN54LQ-DB-15   << access link to be updated

Photo of Nordic nRF54L15 DK


Preparation of Hardware:
1. 1x Nordic NRF54L15 DK (PCA10156-0.9.1)
(Note: If you have PDK (PCA10156-0.8.1) on hand, it can be done in trial phase)
2. 1x Raytac AN54LQ-DB-15
3. 1x IDC Ribbon wire
4. 2x USB-C connector wires (for powering the kit up)

Note: Using Nordic nRF54L15DK / nRF54L15PDK as debugging tool and Raytac Demo board-AN54LQ-DB-15 as simulated carrier board(main board) to proceed the program of nRF54L15 for code compiling and development.

Tips: Please align the red edge of Ribbon at side of 1 in connector J1.


Step 1 —- Connected NRF54L15 DK and AN54LQ-DB-15 by IDC Ribbon wire
Step 2 —- Powering on both NRF54L15 DK and AN54LQ-DB-15 by USB-C connector


<<  Schematic of AN54LQ-DB-15(Updated on 21-Jan-2025)  >> (Click on the picture to zoom in)


Software Kits Resource & Preparation
Download nRF Connect For Desktop (Please Click Me)
Download nRF Command Line Tools (Please Click Me)


Preparation
1. Prepared with the latest version of nRF Connect for Desktop and Select version Windows 64-bit – 5.1.0
2. Prepared with the latest version of nRF Command Line Tools and Select version Windows x86 64-10.24.2
**Note: SEGGER J-LINK Upgrade message might pop up while you’re doing above download.

 If you’re initiating Segger Embedded Studio (SES) application, please check the guideline here(Click me) 

3. Locate all the necessary kits for programming in PC (Check Software/Application list)


Get started with building your program

Intro: The development tool of nRF Connect SDK(NCS) equipped with free VS (Visual Studio) Code IDE for firmware compile and programming.
Note: it is highly recommended to apply NCS 2.8.0 for advanced features of nRF54L15.

Step 1 —- Activate your “nRF Connect for Desktop”  >> “Toolchain Manager” >> “Open” >> “Install”


Step 2 —- You will find multiple options of NCS V x.x.x in the tool, we’re using NCS v2.8.0 as example to run sample code of nRF54L15.


Step 3 —- Make sure the NCS v2.8.0 is installed at same directory with compiling system. (the root of Open VS Code) (This is using C:\ncs  as example.)


In case to organize the files, do “Select directory’” and “Confirm”.


Step 4 —- After nRF Connect SDK v2.8.0 Download ready , go “Open VS Code”.


Step 5 —- Go “Open Existing Application” , and activate example code: Bluetooth > peripheral_uart


Step 6 —- Moving to program build & compiling by selecting dev kit: nrf54l15dk/nrf54l15/cpuapp


Step 7 —- You will get a .hex file after the above programming compiling process.


Step 8 —- Functions are available for during the code compiling process under “ACTIONS” in VS Code IDE
<< Build >>


<< Debug >>


<< Flash >>


Firmware Programming
It is feasible to do the firmware programming using nRFConnect SDK (NCS) tool.
Developer may use “Programmer” to do the firmware flashing with the candidate .hex file.

Step 1 —- Execute nRF Connect for Desktop >> Programmer >> Open


 “Select Device”


Select ”nRF54L15 DK


“Add File”


Step 2 —- Select the candidate .hex file

Select “Erase & Write”


It indicates the programming process is on the way↓


The firmware programming process is done after seeing “Completed” in system Log field.


Step 3 —- Use the mobile App to make sure the Bluetooth broadcasting is functioning after the firmware flashing process is successfully done to the module.


D. Channel Sounding Preview

What is Channel Sounding? —- Advance the “Find My” feature into next level accuracy
Have you ever concerned about the distance accuracy when you’re using RSSI to get the distance between devices and to evaluate the transmission distance with legacy Bluetooth module?
Nordic NRF54 solution has taken us into next level with Channel Sounding feature that achieves the “centimeter-level” distance accuracy. Early implement achieves 10-20cm in the record.

Credit: Bluetooth Alliance


How does Bluetooth Channel Sounding work?
Bluetooth Channel Sounding implemented with Phased-Based Ranging (PBR) & Round-trip time (RTT)(the concept idea of TOF time of flight) algorithm to achieve a higher precision of measuring distance between 2 devices.

Phased-Based Ranging (PBR):
Signal has been sent between initiator and reflector with multiple frequency to increase measuring accuracy.

Credit: Bluetooth Alliance


Round-trip time (RTT): It’s the concept of utilizing TOA (Time of arrival). Using TOD(Time of departure) & TOA to measure the timing during the packet transmission between devices.

Credit: Bluetooth Alliance


Potential applications:
Personal item finding
Secure access control
Smart lock system
Digital Key
Asset Tracking


Reference:
Bluetooth Channel Sounding
nRF54L15 DK hardware
nRF Connect SDK Documentation
Nordic Dev Zone forum
AN54LQ-15 Module series


Edited by Business Development Manager: Ms. Jocelyn Tsai
Technical guidance provided by R&D Manager: Mr. MW Lee & Mr. Stanley Huang




Raytac Corporation 勁達國際電子股份有限公司
A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262


Bluetooth Specification: BT6 ; BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN


All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208


Step-by-Step Guide to Purchasing MAC Addresses from IEEE for Your Devices

Currently, the Nordic Wifi module – AN7002Q on Raytac’s AN7002Q-DB-5340 board isn’t loaded with a Wi-Fi MAC address. You can choose to use your own MAC address or request one from Raytac. Below is a complete tutorial for users who would like to purchase MAC addresses themselves.

Note: Raytac provides two free Wi-Fi MAC addresses (2.4GHz & 5GHz bands) for each AN7002Q module.
If you have a Raytac AN7002Q-DB-5340 demo board but have not received the Wi-Fi MAC addresses, please contact us at sales@raytac.com.



What is a MAC Address?

A MAC address (Media Access Control address) is a unique identifier used to identify network devices. It is typically composed of six groups of two hexadecimal digits, for example, 00:1A:2B:3C:4D:5E. The first six characters are known as the Organizationally Unique Identifier (OUI), which identifies the manufacturer or supplier of the MAC address. Manufacturers can use the OUI to identify the producer of the device.

Each network device’s MAC address should be unique. It is an important identifier used for unique identification among network devices, ensuring that devices can communicate correctly within a local area network. However, it is important to note that MAC addresses can be modified within a local network, so they should not be relied upon as the sole basis for security.


How to Obtain a MAC Address?

The application and distribution of MAC addresses are managed by IEEE (Institute of Electrical and Electronics Engineers). Here’s how to apply for a MAC address from IEEE:
Currently, MAC addresses can only be purchased directly from the IEEE Standards Association in the United States. Depending on the quantity, they can be categorized as:

MA-L (approximately 16 million addresses)
MA-M (approximately 1 million addresses)
MA-S (4096 addresses)



Purchase process

1. Register for an IEEE Account
Visit IEEE’s official website to create an account.


2. Log in and go to the MAC Address Purchase Page
After logging in, navigate to the MAC address purchase page: IEEE MAC Address Purchase


3. Select the number of MAC Addresses to purchase.


4. Fill in your purchase information by providing the required details.


5. Confirm confidentiality
Confirm whether the MAC address purchase is confidential. If you are purchasing publicly registered MA-L, select “No" for this option.


6. Choose payment method
IEEE accepts several payment methods, including mailing a U.S. bank draft, wire transfer in U.S. dollars, and online credit card payment.


7. Receive your OUI
Within 7 working days, IEEE will send an email to the registered email address containing the purchased OUI.


After obtaining the OUI, you can retrieve all the purchased MAC addresses using code and then import them into a database or Excel for management.



Edited by Sales Manager: Ms. Vicky Huang


Raytac Corporation 勁達國際電子股份有限公司 
A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262

Bluetooth Specification: BT5.4 ; BT5.3 ; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN

All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC/WPC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208


Secure DFU OTA for nRF52832 solution modules: Creating hex/zip file for implementation – Part 2(Combining/merging built files)

Following up – Part 1: Bootloader & Application (Click for article link),

We will be focusing on:

in this article.

IC: nRF52832
DK: PCA10040 (for nRF52832)
SDK: 16.0.0
Softdevice: s132_nrf52_7.0.1_softdevice.hex
IDE: Keil C
PC: Win 10




Step 1. Execute the combine batch file in bootloader (nrf52832_bootloader_setting_merge.bat) and generate file of nrf52832_bootloader_secure_combin_settings.hex :

@echo off
title = [ J-Link Tool ] %CD%
set nrfDir=C:\Program Files (x86)\Nordic Semiconductor\nrf5x\bin
set BS= nrf52832_bootloader_secure_settings.hex
set BL= nrf52832_xxaa_s132.hex
set BSBLCombind= nrf52832_bootloader_secure_combin_settings.hex
set path=%nrfDir%;%path%
pause
echo ———–merge image file——————-
mergehex.exe -m %BS% %BL% -o %BSBLCombind%
pause



Step 2. Create a Final.hex file by 3-in-1 batch file(nrf52832_3in1_merge.bat)
※Note : This hex file is created for the production line to pre-load firmware into modules prior to shipment.

@echo off
title = [ J-Link Tool ] %CD%
set nrfDir=C:UsersuserDesktopNordic BLEnRF5_merge toolsnRF52 bin
set SD= s140_nrf52_7.2.0_softdevice.hex
set BLT= nrf52832_bootloader_secure_combin_settings.hex
set APP= nrf52832_xxaa.hex
set SD_BLT=SD_BLT.hex
set Finalfile=Final.hex
set path=%nrfDir%;%path%
pause
echo ———–merge image file——————-
mergehex.exe -m %SD% %BLT% -o %SD_BLT%
pause
mergehex.exe -m %SD_BLT% %APP% -o %Finalfile%
pause



Step 3. Create a DFU(OTA).zip file of nrf52832_xxaa.zip
※Note : This zip file is created for end device DFU(OTA) implementation.

nrfutil pkg generate –hw-version 52 –sd-req 0xCB –application-version 0xFF –application
nrf52832_xxaa.hex –key-file private.pem nrf52832_xxaa.zip

The DFU OTA zip file will be derived.

※Note :
The “0xCB" appeared in the above DOS code(in red font) is the FWID(Firmware ID) for s140_nrf52_7.2.0_softdevice.hex;
FWID can be found from the soft device documents on the Nordic website.




Step 4: Run DFU OTA (On mobile in this example)


4A. Install the nRF Connect APP on mobile, with DFU OTA file: nrf52832_xxaa.zip. (Download link)


4B. Send nrf52832_xxaa.zip via email to mobile device after combination is done on PC, then download it.


4C. Open nRF Connect APP and run connection;


4D. Execute DFU and select “Distribution packet(ZIP)", thus starting the DFU OTA process.


4E. Start DFU OTA → exit the APP after DFU OTA is completed → restart the mobile device.



Secure DFU OTA for nRF52832 solution modules: Guide to create hex/zip file for implementation
Detailed links of articles:
Part 1: Bootloader & Application (Click for article link)
Part 2: Combining & merging built files



Technical guidelines provided by R&D Manager: Mr. MW Lee
Edited by Sales Manager: Ms. Mandy Chao


Raytac Corporation 勁達國際電子股份有限公司 
Raytac Corporation: A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262

Bluetooth Specification: BT5.4 ; BT5.3; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN

All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208

Secure DFU OTA for nRF52832 solution modules: Guide to create hex/zip file for implementation – Part 1(Bootloader & Application)

Below are the guidelines to implement Secure DFU OTA by using Raytac’s nRF52832 modules, SDK16.0.0.
It consists of 2 parts:

Part 1: Bootloader & Application


Part 2: Combining and merging built files (Article link)

In this article, we will be focusing on Part 1: Bootloader & Application.



Path: ..\nRF5_SDK_16.0.0_98a08e2\examples\dfu\secure_bootloader\pca10040_s132_ble\arm5_no_packs
Specifically for nRF52832, programmers need to embed ECC(Elliptic Curve Cryptography) into the bootloader.


Step 1. ’micro_ecc_lib_nrf52.lib’ library can be found in the path below, but we need to boot it up first.


Step 2. Unzip ’micro-ecc-master.zip’ to the below path(create a new “micro-ecc” file first).


Step 3. Run ’gcc-arm-none-eabi-7-2018-q2-update-win32.exe’.


Step 4. Make sure the Environment variables in Win10 are set as below. (Follow the steps 1 to 6)


Step 5. Open DOS → run the “make” command under armgcc path → generate’micro_ecc_lib_nrf52.lib’


Step 6. Add ’micro_ecc_lib_nrf52.lib’ into folder: nRF_micro-ecc


Step 7. An error may occur while building bootloader without a public key:
(Shown in red frames in below screenshot)


Step 8. How to generate the public key file in Bootloader?
A. Visit DOS at path: ..\Python27\Scripts
B. Then execute:

nrfutil keys generate private.pem
nrfutil keys display --key pk --format code private.pem --out_file public_key.c


Step 9. Copy the pk[64] code from (public_key.c) into (dfu_public_key.c)
(Shown in red frames in below screenshot)

※Note: Make sure to save the 3 generated files:
private.pem
public_key.c
dfu_public_key.c


Step 10. Generate the bootloader file: nrf52832_xxaa_s132.hex after re-compiling the code files.


Application


Path:
..\nRF5_SDK_16.0.0_98a08e2\examples\ble_peripheral\ble_app_uart\pca10040\s132\arm5_no_packs
Before building Application code , some amendments need to be made regarding DFU-related settings and code inside Application:


Step 1. Add code in definition in C/C++ :
BL_SETTINGS_ACCESS_ONLY NRF_DFU_SVCI_ENABLED NRF_DFU_TRANSPORT_BLE=1
(Total 3 steps definitions need to be set up)


Step 2. Add the 3 paths shown below in C/C++ to make DFU work.


Step 3. Add the .c files inside red frame in (Screenshots 1 & 2)
and add the 2 groups of (nRF_DFU & nRF_SVC)(Screenshot 4) under Project(Screenshot 3)


Step 4. Add code into main.c file in Application (..\examples\ble_peripheral\ble_app_uart\main.c)
(Please refer to: main.c file at: ..\examples\ble_peripheral\ ble_app_buttonless_dfu)


Step 5.
The code of file: sdk_config.h (..\examples\ble_peripheral\ble_app_uart\pca10040\s132\config\sdk_config.h)

inside Application needs to be modified.


Step 6. Adjust the IRAM1 value in Target after implementing DFU service:
Make sure the IRAM1 Value of *p_app_ram_start is modified from default: 0x20002AD8 0xD528 to
0x20002AE8 0xD518, as shown in the red frame in the bottom right corner.
In this case, the program should run/advertise successfully.


Step 7. Create a file of: nrf52832_xxaa.hex after building application code files.



Step 8. Create a bootloader setting file of nrf52832_bootloader_secure_settings.hex via DOS.
nrfutil settings generate –family NRF52 –application nrf52832_xxaa.hex –application-version 3 —
bootloader-version 2 –bl-settings-version 1 nrf52832_bootloader_secure_settings.hex –no-backup

※Stay tuned for Part 2: Combining and merging built files in the next article, scheduled release in next week(04-Sep-2024).


Technical guidelines provided by R&D Manager: Mr. MW Lee
Edited by Sales Manager: Ms. Mandy Chao



Raytac Corporation 勁達國際電子股份有限公司 
Raytac Corporation: A Bluetooth, Wi-Fi, and LoRa Module Maker based on
Nordic nRF54; nRF53: nRF52; nRF51; nRF7002
Semtech Specification: SX1262

Bluetooth Specification: BT5.4 ; BT5.3; BT5.2.
Wi-Fi Specification: Wi-Fi 6
LoRa Specification: LoRaWAN

All products are FCC/IC/CE/Telec/KC/RCM/SRRC/NCC Pre-Certified.
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208

FAQ: How to write MAC address into the OTP memory of Raytac’s nRF7002 Wi-Fi module/AN7002Q-DB-5340 DevKit

Recently we have received the FAQ: how to write MAC address into the OTP memory of Raytac’s AN7002Q-P Nordic Wi-Fi module? In this article, we’ll get this question explained to give customers a more smooth experience using the AN7002Q-nRF5340 Demo Board(AN7002Q-DB-5340).

Is there an existing Wi-Fi MAC address in the AN7002Q part on the DevKit?

Currently, the AN7002Q module on Raytac’s AN7002Q-DB-5340 board has no Wi-Fi MAC address.


When running Wi-Fi Scan code/Station code/Shell code…etc. on NCS v2.6.0 (and later versions), the AN7002Q module must have a programed Wi-Fi MAC address to function properly.

Therefore, it’s necessary to follow the below process:
1. Program the original Wi-Fi radio test code (..\nrf\samples\wifi\radio_test) into the MDBT53 section,
2. Then write the Wi-Fi MAC address in to the AN7002Q section(nRF7002 IC) via command.

After this, program the original Wi-Fi Scan code/Station code /Shell code … into the 5340, and it will function properly.

**Raytac will assign 2 Wi-Fi MAC addresses(for both 2.4GHz & 5GHz) to every AN7002Q module.
*If customers don’t have Wi-Fi MAC addresses for DevKit development yet, please reach out to
service@raytac.com



==================================================================================

Case study 1. SCAN code example


Scenario:
Following error occurred when building the SCAN example code, flash it onto the AN7002Q-DB-5340 board, and run the test.

Solution:

When running Wi-Fi scan code on NCS v.2.6.0 or later version, the OTP memory in the AN7002Q module must have a Wi-Fi MAC address programmed in for the Wi-Fi scan functionality to work properly.

(Note: OTP is a One-Time programmable memory, which means the value can only be written once.
The customer must aware of this before performing the OTP operation.)

1. Program the original Wi-Fi radio test code (..\nrf\samples\wifi\radio_test) into the MDBT53 section,
then manually input and execute the following OTP read command.

wifi_radio_ficr_prog otp_read_params

If you see both MAC0 and MAC1 display a value of 0xFF, as shown in above, it means that you haven’t written the Wi-Fi MAC address into the AN7002Q’s OTP.

2. Manually issue the OTP write command to write the Wi-Fi MAC address into the OTP.

https://docs.nordicsemi.com/bundle/ncs-latest/page/nrf/samples/wifi/radio_test/ficr.html

wifi_radio_ficr_prog otp_write_params 0x120 0xDDCCBBAA 0xFFEE

wifi_radio_ficr_prog otp_write_params 0x128 0xDDCCBBAA 0xFFEE


After you complete the above, use the OTP read command in below to check if the Wi-Fi MAC address value was written.
The MAC0 and MAC1 should display the value you’ve input from the OTP write command.

wifi_radio_ficr_prog otp_read_params

3. Program the original Wi-Fi SCAN code back into the MDBT53, the Wi-Fi scan functionality should work properly.

==================================================================================

Case study 2. Shell code example

SDK Wi-Fi example test – Running Shell Code on AN7002Q-DB-5340:

Scenario:
An error occurs while running Shell code on AN7002Q-DB-5340.

Solution:
The AN7002Q-DB-5340 is paired with nRF5340 DK for development,
but neither of the 2 boards has an external MX25R64 (Serial NOR Flash) component.
So far, only the nRF7002DK board is equipped with the MX25R64.

Therefore, while running the original Wi-Fi shell code, the program will enable SPI NOR.

When using AN7002Q-DB-5340, you should add CONFIG_SPI_NOR=n in the prj.conf file to disable SPI NOR, to turn off any configurations related to it.


Edited by Sales Manager: Ms. Mandy Chao
Technical guidance provided by R&D Manager: Mr. MW Lee
Keyword: nRF7002 MAC address


Raytac Corporation 勁達國際電子股份有限公司 
Bluetooth & WiFi module maker based on Nordic nRF54, nRF53, nRF52, nRF7002 solution
BT5.4 &BT5.3 & BT5.2 & BT5.1 Qualified, FCC/IC/CE/Telec/KC/RCM/SRRC/NCC Pre-Certified.
Bluetooth Solution: nRF54, nRF5340, nRF52840, nRF52833, nRF52832, nRF52820, nRF52811, nRF52810, nRF52805, nRF51822
WiFi Solution: nRF7002
http://www.raytac.com
email: sales@raytac.com
Tel: +886-2-3234-0208